The influence of thermochemical convection on the fixity of mantle plumes
نویسندگان
چکیده
A general feature of both isochemical and thermochemical studies of mantle convection is that horizontal plume velocities tend to be smaller than typical convective velocities, however, it is not clear which system leads to a greater fixity of mantle plumes. We perform twoand three-dimensional numerical calculations and compare both thermochemical and isochemical cases with similar convective vigor to determine whether presence of a dense component in the mantle can lead to smaller ratios of horizontal plume velocity to surface velocity. We investigate different viscosity and density contrasts between chemical components in the thermochemical calculations, and we perform isochemical calculations with both free-slip and no-slip bottom boundary conditions. We then compare both visually and quantitatively the results of the thermochemical and isochemical calculations to determine which leads to greater plume fixity. We find that horizontal plume velocities for thermochemical calculations are similar to those from isochemical calculations with no-slip bottom boundary conditions. In addition, we find that plumes tend to be more fixed for isochemical cases with free-slip bottom boundary conditions for two-dimensional calculations, however, in three dimensions, we find that plume fixity is similar to that observed in thermochemical calculations. D 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Steady plumes produced by downwellings in Earth-like vigor spherical whole mantle convection models
[1] If mantle thermal upwellings (plumes) are the cause of volcanic ‘‘hot spots,’’ then observations suggest that plumes are relatively fixed with nonuniform distribution and limited lifetimes. To date, fixity of upwellings has only been shown in models of convection at either low-vigor or with layering, though studies where the lower mantle has high viscosity do frequently show upwellings with...
متن کاملDynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer
[1] Density variations due to changes in bulk chemistry in the lowermost mantle play an important role in the dynamics and chemistry of plumes. In this study we perform a series of high-resolution numerical experiments in an axisymmetric spherical shell to systematically investigate the formation of plumes from a thermochemical boundary layer and the entrainment of the dense material by plumes....
متن کاملOscillating and stagnating plumes in the Earth's lower mantle
We investigate the coupled effects of mineralogy and pressure on the dynamics of axisymmetric thermochemical plumes in the lower mantle, using both high resolution numerical experiments and simple analytical theory. We focus on the effect of composition on the compressibility which has not been studied before. Our results show that the effect of mineralogy is considerable: For relatively low Si...
متن کاملCompressible thermochemical convection and application to lower mantle structures
[1] A new finite element code for compressible thermochemical convection is developed to study the stability of a chemical layer at the base of the mantle. Using composition-dependent compressibility and a density difference between compositions at a reference pressure, a composition-dependent density profile is derived. Together with depth-dependent thermal expansion, this combination of param...
متن کاملProvenance of plumes in global convection models
In global convection models constrained by plume motions and subduction history over the last 230 Myr, plumes emerge preferentially from the edges of thermochemical structures that resemble present-day large low shear velocity provinces (LLSVPs) beneath Africa and the Pacific Ocean. It has been argued that large igneous provinces (LIPs) erupting since 200 Ma may originate from plumes that emerg...
متن کامل